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We have used Monte Carlo simulations to investigate the magnetic properties of asymmetric dots as

a function of their geometry. The asymmetry of round dots is produced by cutting off a fraction of

the dot and is characterized by an asymmetry parameter a. This shape asymmetry has interesting

effects on the coercivity (Hc), remanence (Mr), and barrier for vortex and C-state formation. The

dependences of Hc and Mr are nonmonotonic as a function of a with a well defined minima in these

parameters. The vortex enters the most asymmetric part and exits through the symmetric portion of

the dot. With increasing a the vortex formation starts with a C-state which persists for longer fields

and the barrier for vortex exit diminishes with increasing asymmetry, thus providing control over the

magnetic chirality. This implies interesting, naively unexpected, magnetic behavior as a function of

geometry and magnetic field. VC 2011 American Institute of Physics. [doi:10.1063/1.3561483]

I. INTRODUCTION

Recently much attention was dedicated to the study of

regular arrays of magnetic particles produced by a number of

lithographic techniques. Besides the basic scientific interest

in the magnetic properties of these systems, they may pro-

vide the means for the production of new magnetic devices,

or as high-density magnetic recording media.1 The properties

exhibited by these nanostructures are strongly dependent on

the geometry, and therefore understanding the effect of the

shape is fundamental for the development of applications of

such materials.2

The magnetization of nanodots may reverse by one of

two possible mechanisms: vortex nucleation and coherent

rotation.3 Vortex states are characterized by an in-plane and

an out-of-plane magnetization. The in-plane magnetization is

characterized by vortex chirality, defined as the magnetiza-

tion direction around the vortex core (clockwise or counter-

clockwise). The out-of-plane magnetization is defined by the

vortex core or polarity. In this way, vortices exhibit four dif-

ferent magnetic states defined by their polarity and chirality.

Methods to control the chirality in the single FM layer ele-

ments exploit an asymmetry in the applied field, such as pro-

duced by a magnetic force microscope tip,4,5 a magnetic pulse,6

a magnetic field gradient,7 or the magnetization history.8

Alternatively asymmetric disks may provide control

over the vortex chirality with an in-plane magnetic field.9–14

The effect of geometry on the vortex nucleation, annihila-

tion, and switching field distribution was explored in 40-nm-

thick Ni80Fe20 disk arrays, with a diameter of 300 nm and

different degrees of asymmetry.13 These measurements and

micromagnetic simulations showed that the nucleation and

annihilation of vortices vary linearly, while the switching

field distribution oscillates with the ratio of the long/short

asymmetry axes. More recently, studies of arrays of asym-

metric Co dots showed that the vortices can be manipulated

to annihilate at particular sites under specific field orienta-

tions and cycling sequences.14

In this paper, Monte Carlo simulations are used to study

the magnetic configurations and reversal processes of asym-

metric dots as a function of their geometry. The behavior of

the chirality, coercive field, and remanent magnetization is

studied for noninteracting asymmetric dots as a function of

their aspect ratio. Our results show that the asymmetry deter-

mines the region where vortex nucleation occurs, fixing the

chirality of the vortex.

II. MODEL

Our starting point is a uniform circular dot with diame-

ter d¼ 80 nm and height h¼ 20 nm. We introduce asymme-

tries in these dots by cutting specific sections characterized

by a parameter a¼R0/R, as illustrated in Fig. 1. The field is

applied in-plane along the asymmetry direction.

A symmetric dot is characterized by a¼ 1.0, while a

semicircular dot is given by a¼ 0.0. To simulate the mag-

netic properties we used Monte Carlo simulations, assuming

that the interdot distance is large enough that magnetic inter-

actions are negligible, i.e., each dot behaves independ-

ently.15–17 The internal energy, Etot, of a single dot with N
magnetic moments is given by

Etot ¼
1

2

X

i 6¼j

Eij � Jijl̂i � l̂j

� �
þ EH; (1)a)Author to whom correspondence should be addressed. Electronic address:
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where Eij is the dipolar energy given by

Eij ¼ ~li �~lj � 3ð~li � n̂ijÞð~lj � n̂ijÞ
� �

=r3
ij; (2)

with rij the distance between the magnetic moments ~li and

~lj; and n̂ij the unit vector along the direction that connects

the two magnetic moments. Jij is the exchange coupling,

which is assumed nonzero only for nearest neighbors, and l̂i

is a unit vector along the direction of ~li. Here

EH ¼ �
P

i~li � ~H represents the Zeeman energy for a field ~H
applied along the x direction. As we are interested in poly-

crystalline samples, we have not included anisotropy.

Simulation of the magnetic configuration of 10–100 nm

structures is not possible at present with standard computa-

tional facilities due to the large number of magnetic

moments within each particle. To avoid this problem, we use

a scaling technique developed earlier,18 for the calculation of

the phase diagram of cylindrical particles. In this approach

we define a scaling factor x (0.01–0.001), small enough to

reduce the system to a computationally manageable size

while still large enough to conserve its physical complexity,

i.e., for instance the possibility for the development of a

magnetic vortex. With this, physically reasonable results are

obtained, in agreement with micromagnetic calculations, as

long as the exchange constant is rescaled by J0 ¼ xJ, T0 ¼ xT,

and N0 ¼Nx3g with g� 0.55� 0.57. In particular for cylin-

ders, this method allows rescaling geometric parameters

(height, h, and diameter, d, for instance) without loosing

physically meaningful results for the phase diagram and for

the general magnetic state of a single nanoparticle.19 Thus

using this method the geometric parameters are rescaled as

d0 ¼ dxg and h0 ¼ hxg.

For our simulations, we use the same parameters used

earlier,15,20 which produced for symmetric Fe dots good

agreement between simulations and experimental measure-

ments. These parameters are the magnetic moment

j~lij ¼ l ¼ 2:2 lB, with lB the Bohr magneton, bcc lattice

constant a0¼ 0.28 nm, and J¼ 40 meV. For the dot sizes

considered in this paper, N would be larger than 107, which

is computationally unmanageable. Thus we replace the dot

with a smaller one according to the scaling technique

described above.18–21 Correspondingly, we also scale the

exchange interaction by a factor x: J0=J¼ 0.00245, i.e., we

replace J with J0 ¼ 0.098 meV in the expression for the total

energy. In this case, g� 0.57 and d0 ¼ 80xg¼ 2.68 nm.

The Monte Carlo simulations are carried out using

the Metropolis algorithm with local dynamics and single-

spin flip methods.22 The new orientation of the magnetic

moment is chosen randomly with a probability

p ¼ min½1; expð�DE=kBT0Þ�, where DE is the change in

energy due to the reorientation of the spin, kB is the Boltz-

mann constant, T0 ¼ xT and T¼ 10 K.

The initial state of the system is setup using a random

number generator which is used to randomly choose the spin

sequence and their individual orientations. A large magnetic

field of H¼ 5.5 kOe is applied along the [100] crystallo-

graphic direction, labeled as the x axis. This produces a con-

figuration in which the system is saturated and therefore

most of the magnetic moments point along this direction.

We define Ms as the magnetization at the maximum

applied field (5.5 kOe), Mr as the remanent magnetization

and Hc as the coercivity. Field steps of DH¼ 0.1 kOe are

used in all calculations, that are 110 DH values for the com-

plete hysteresis cycle. It is important to recognize that, due

to the nonequilibrium situation, the number of Monte Carlo

steps (MCS) used is a critical issue in the calculation of the

hysteresis loops. Hence, we first study the effect of the MCS

on the coercivity.

Figure 2 illustrates Hc for a symmetric dot as a func-

tion of MCS. Hc converges asymptotically to 0.47 after

4000 MCS per field value. However, the effects discussed

here are qualitatively similar above MCS� 3500. There-

fore, we fix the number of Monte Carlo steps for each field

at this value, performing typically 385.000 Monte Carlo

steps per spin for a complete hysteresis loop. These num-

bers are independent of the scaling factor, as discussed in

Ref. 21. For each calculation, six hysteresis loops, with dif-

ferent random number seeds, are averaged to obtain the

results presented here.

FIG. 1. (Color online) Geometrical parameters of a nanodot. The white sur-

face represents the cut surface.

FIG. 2. Coercivity, Hc, of a symmetric dot for different numbers of Monte

Carlo steps, MCS.
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III. RESULTS AND DISCUSSION

The main aim of this work is to investigate the effect

of the disk shape asymmetry on the magnetization reversal

process. Figure 3 shows a strong geometry dependence of

the hysteresis curves for different a. For 0.9< a� 1.0, a

neck appears with implies that the reversal occurs by

means of the nucleation and propagation of a vortex. Fur-

ther decrease of a leads to almost square loops and the

coercivity and remanence change as a function of a, as

shown for h¼ 20 and 30 nm in Figs. 4(a) and 4(b), respec-

tively. Even a small asymmetry (a¼ 0.95) induces an ab-

rupt decrease of both the coercivity and remanence.

However, further decreases of a produces an increase in

the remanence and coercivity. This is a consequence of

the competition between exchange, local dipolar interac-

tions, and geometry. The magnetic moments produced on

the new surface experience a lower exchange interaction

facilitating the formation of a C state. Moreover, as

expected from the Pole Avoidance Principle,23 a C state

nucleates to avoid the magnetic pole at the new surface.

The C state, which is the precursor of a vortex, decreases

the coercivity. However, further increase of the asymme-

try competes with the local effects described above, tend-

ing to inhibit vortex formation. Therefore, the dependence

of the coercivity with a is nonmonotonic.

The surprising large quantitative difference between the

h¼ 20 nm and h¼ 30 nm sample in Fig. 4(b) is due to the

full collapse of the coercivity and the vertical change in mag-

netization as a function of the field, as expected from the for-

mation of a vortex.

We analyze the reversal mechanisms from snapshots of

the spin configurations for different values of a and the

applied magnetic field. Figures 5(a)–5(c) show snapshots at

particular field values for h¼ 20 nm and a¼ 1.0, 0.5, and

0.1. These snapshots show that all the dots reverse their mag-

netization via vortex nucleation and propagation, even the

dots with a¼ 0.1, which exhibit almost square hysteresis

loops. In symmetric dots, square loops are a sign of coherent

reversal, and the appearance of a neck indicates that the re-

versal is driven by a vortex nucleation and propagation.15

However for asymmetric dots reversal by vortex nucleation

may lead to a square loop.

For a¼ 1.0 the vortex can nucleate either at the upper or

lower portion of the dot, depending of the seed used in the

simulation. For instance Fig. 5(a) shows the propagation of a

vortex which nucleates at the �y region, while for other

seeds nucleation may occur at the opposite region. However,

for a< 1.0 [Figs. 5(b) and 5(c)] the nucleation occurs always

at the þy region (the asymmetric part), determining uniquely

the chirality, þz (see Fig. 1). This shows that the asymmetry

controls the position of vortex nucleation during reversal

whereas the vortex chirality is determined by the external

magnetic field direction. In high magnetic fields, all spins are

aligned along with the applied field. For asymmetric dots the

reversal proceeds as follows. As the field is reduced at a par-

ticular negative field a vortex nucleates with a counterclock-

wise direction as viewed from the top (Fig. 1). The reversal

FIG. 3. (Color online) Hysteresis loops for an asymmetric dot as a function

of a for height h¼ 20 nm (a) and h¼ 30 nm (b). For a¼ 1.0 the uniform cir-

cular dot has a diameter of d¼ 80 nm.

FIG. 4. (Color online) Coercivity (a) and remanence (b) for asymmetric

dots as a function of a for height h¼ 20 nm (dots) and h¼ 30 nm (triangles).
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starting from saturation in a negative field proceeds in the

opposite way. A qualitatively similar behavior occurs for

h¼ 30 nm. These results are in good agreement with our in-

dependent OOMMF simulations.24

Finally, we investigate the shape of the vortex as a func-

tion of the dot geometry. To characterize the vortex we

define b ¼ ðð
P

i lixÞ2 þ ð
P

i liyÞ2Þ=M2
s , where lix and liy

are the x and y components of individual magnetic moments,

and i ranges over all dots. In this way, b¼ 0 represents a per-

fect vortex, while deviations from this state are represented

by b= 0. In particular, b¼ 1 represents a fully saturated fer-

romagnetic state. As b varies from 1 to 0, a loop appears and

its width represents the stability of the vortex. Figure 6

shows b for different a.

In all cases the vortex is almost perfect, b� 0, at some

value of the external field. At this value the magnetization is

zero and therefore represents the coercive field. This value

varies with the geometry of the dot, but also the geometry

influences the stability of the C state and the vortex. In par-

ticular, for a¼ 1.0 the magnetization reverses by vortex

nucleation at a low field value, �0.3 kOe. The abrupt transi-

tion of b from 1 to 0 is a consequence of the fast propagation

of the vortex to the center of the dot. This state is very stable,

as shown by the �2.2 kOe field required for vortex annihila-

tion. This feature is represented in Fig. 6(a) by the continuum

transition of b from 0 to �0.3. For a¼ 0.9 nucleation of a

C-state occurs first at þ0.9 kOe, represented in Fig. 6(b) by

the decrease of b from 1 to �0.6. Then, a vortex nucleates at

�0.1 kOe, which annihilates at �1.9 kOe, after which a

C-state appears again, ending the magnetization reversal.

This figure together with the snapshots in Fig. 5 confirms

that a small cut is required for the creation and stabilization

of a C-state. The results for a¼ 0.5 are qualitatively similar

to those for a¼ 0.9, although the C-state is more stable, as

evidenced by the slow decrease of b from 1 to �0.5, until

the vortex appears. During this reversal the vortex nucleates

at �1.3 kOe and annihilates at �1.7 kOe. Finally, for a¼ 0.1

the C-state is even more stable. The vortex nucleates at �2.4

kOe and annihilates at �2.6 kOe. Thus, the coercivities

increase, the C states become more stable, and the vortices

become less stable with decreasing a. Interestingly, the

degree to which the Mr decreases depends critically on the

height of the dot.

FIG. 5. Snapshots of the magnetization for a dot with h¼ 20 nm at four

different values of H. The points depict the position of the magnetic

atoms, while the arrows illustrate the direction of the magnetic moments

for a¼ 1.0 (a): 0.5 (b): and 0.1 (c). For (a) the vortex propagates from

the �ŷ to þŷ direction with a clockwise chirality while for (b) and (c)

the vortex propagates from the þŷ to �ŷ direction with a counterclock-

wise chirality.

FIG. 6. (Color online) Vorticity b of the left (thick lines) and right (thin

lines) branches of the hysteresis curves as a function of the external mag-

netic field, for (a) a¼ 1.0, (b) a¼ 0.9, (c) a¼ 0.5, and (d) a¼ 0.1.
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IV. CONCLUSIONS

The results presented above show that the asymmetry

determines the region of vortex nucleation and its chirality

during magnetization reversal. The coercivity, remanence,

and vortex stability are strongly affected by the asymmetry,

with a nonmonotonic behavior as a function of a. These

results are in agreement with the previous experimental evi-

dence13,14 which explored the relation between asymmetry

and chirality. Moreover, it is showed that all the dots reverse

their magnetization via vortex nucleation and propagation,

even dots with a< 0.5, which exhibit almost square hystere-

sis loops. Therefore, asymmetry can be used to tailor the

magnetic properties of nanostructured magnetic particles for

specific applications.
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